A NEW WAY TO SEE

Next generation **Terahertz microprobe series**

TeraSpike

LT-GaAs photoconductive field detector

With the new device series TeraSpike we proudly introduce the next generation of microprobes for the photoconductive detection of electric fields in the THz frequency range. Based on our customers' feedback and growing application-driven demands a thorough re-design of our previous near-field probetip series has been developed. The result is a versatile detector for radiated and surface-near electric fields in the THz-range with unprecedented performance, robustness and applicability. It seamlessly fits into THz time-domain systems with optical excitation wavelengths below 860 nm and is the most costefficient solution to turn your system into a powerful highresolution near-field THz system.

> Your laser-based THz system can do much more than just spectroscopy – discover the fascinating world of high-resolution THz applications!

Measured near-field image of a pulse-excited THz metamaterial surface.

Measured sheet conductivity image of a laser-doped multicrystalline silicon wafer.

sheet conductivity [mS]

45

40

35

30

25

20

15

10

Applications

- Terahertz research: Metamaterials, plasmonics, graphene, waveguides, ...
- High-resolution Terahertz nearfield imaging
- Contact-free sheet resistance imaging of semiconductors
- MMIC device characterization
- Non-destructive chip inspection
- Time-domain reflectometry (TDR)

Key features

- Smallest active THz probe-tip on the market with only 1 μ m cantilever thickness based on a patented design (DE 10 2009 000 823.3)
- Spatial resolution up to 3 µm
- Frequency range 0 4 THz
- Adaptable to all laser-based THz-Systems with λ < 860 nm
- Mounting compatible with standard opto-mechanical components
- Required optical excitation power < 1 mW

Transversal field microprobes **TeraSpike TD-800-X**

Technical data

TeraSpike TD-800-X-	HR	HRS	HS
Max. spatial resolution	3 µm	20 µm	100 µm
PC gap size	1.5 µm	2 µm	3 µm
Dark current @ 1 V Bias	< 0.5 nA	< 0.5 nA	< 0.4 nA
Photocurrent ^(*)	> 1 µA	> 0.6 μA	> 0.6 µA
Excitation wavelength	700 860 nm		
Avg. excitation power	0.1 4 mW		
Connection type	SMP		

Product details

- Photoconductive probe-tip with integrated overvoltage protection optimized for pulsed excitation
- Mount for variable probe orientation
- Simple & safe probe removal from the set-up
- Robust probe storage box
- Test certificate & manual

Accessories

- SMP to SMA/BNC cable connection
- Photo-current amplifier
- Probe-tip dummy structure
- Mounting & focusing units
- Starter Kit

 $^{(*)}$ For a focus diameter of circa 20 $\mu\text{m},$ bias voltage 1 V , average optical excitation power 4 mW.

Set-up (exemplary for near-field transmission measurements)

All TD-800-X probes are sensitive to x-oriented field components

Time-domain measurement data

Longitudinal field microprobe **TeraSpike TD-800-Z**

Technical data

TeraSpike TD-800-Z-	A-500G
Max. spatial resolution	8 µm
PC gap size	5 µm
Dark current @ 1 V Bias	< 0.4 nA
Photocurrent (*)	>0.5 μA
Excitation wavelength	700 860 nm
Avg. excitation power	0.1 4 mW
Connection type	SMP

 $^{(*)}$ For a focus diameter of circa 20 μm , bias voltage 1 V , average optical excitation power 4 mW.

Time-domain (FFT) data

Spatial resolution

Set-up (exemplary for near-field transmission measurements)

All TD-800-Z probes are sensitive to z-oriented field components

Measurement example: **3D vector field mapping**

Pair of radial-mode THz emitters based on planar bi-metal gratings

Bias-free THz pulse generation probe **TeraSpike TD-1550-Y-BF**

Technical data

TeraSpike TD-1550-Y	-BF
Pulse rise time	<1 ps (down to 0.4 ps)
Bandwidth*	0.01 2.5 THz
Excitation wavelength	700 1600 nm (<860nm recommended)
Avg. excitation power	0.1 4 mW
Cantilever material	InGaAs (n-type)
Lateral tip radius	8 12 μm
Cantilever length	570 600 μm

*For excitation with optical pulses of 90 fs duration. #Other designs possible on request.

Set-up (example for TDR)

Product details

 Probe-tip for surface-near bias-free optical generation of pulsed THz signals

nev

- Mount for variable probe orientation and simple removal from the set-up
- Robust probe storage box
- Test certificate & manual
 Patent pending DE 10 2013 020 216.7

Accessories

- Probe-tip dummy structure
- Mounting & focusing units

Tip design (standard) # $\underline{R = 10 \ \mu m}$

Emitter scheme

Measurement example: THz TDR measurement

$H = \begin{pmatrix} 1 & 1 & 1 \\ 0$

Time-domain measurement data

Frequency-domain measurement data

Sample data: Thin-film microstrip line $z_0 = 110 \Omega$ $w = 35 \mu m$ $h = 57 \mu m$ Cross-section: $\epsilon_r = 2.3$

Set-up:

Applied Laser:

- Wavelength: 780 nm
- Pulse length: 90 fs
- Repetition rate: 100 MHz

Emitter:

- TeraSpike TD-1500-Y-BF
- Optical power: 4 mW

Detector:

- TeraSpike TD-800-X-HRS
- Amplification: 10⁸ V/A
- Optical power: 3 mW

Terahertz emitter **TeraBlast**

Background

The new bias-free Terahertz emitter series TeraBlast from Protemics are optically pumped THz sources which can be used with a wide range of femtosecond laser sources (such as low power oscillators or amplified lasers with wavelengths in the range of 700..1600 nm).

They are ideally suited and tested for nearfield imaging applications including TeraSpike micro-probe operation. The TeraBlast is also a great emitter for classic far-field spectroscopy and other THz applications.

Technical data

TeraBlast TD-1550-L-165	
Excitation wavelength range	700 1600 nm
Typ. average excitation power range	5 mW 1000 mW
Average THz emission power	$> 2.5 \ \mu W^{(a)}$
Active area diameter	ca. 11 mm ^(b)
Adapter dimension (Outer diameter)	1/2 inch

- ^(a) Measured with pyroelectric detector (Spectrum Detector Inc. SPI-D-62-THz) for 370 mW optical pump power
- ^(b) Larger active areas possible. Please request!

Key benefits

- Recommended THz source for TeraSpike microprobe operation
- High emission power
- Patent pending design (DE102012010926 A1)
- Unmatched simple handling
- Virtually no alignment or focusing effort
- Can be used as a point source or array emitter
- Linearly polarized emission
- Extremely robust due to bias-free operation
- No device failure on local short-cut defects
- No dark current
- No parasitic off-set signal generation in lock-in detection schemes

Terahertz emitter **TeraBlast**

(c) & (d) Far-field transient measured with THz receiver TM5-R-DP10_25M from Fraunhofer HHI.

Integration components **Sub-system modules**

Sub-system D-B1

Sub-system D-B2

Description

Mini-board set-up with prealigned opto-mechanical components for the system integration of TeraSpike microprobes.

Functions:

- Microprobe mount
- Manual beam-to- microprobe focusing
- Manual beam-to- microprobe alignment
- Manual microprobe height variation

Description

Multi-board set-up with prealigned opto-mechanical components.

Functions:

- Motherboard including subsystem D-B1 in customized height
- Assembly brackets
- 2 alignment apertures
- 2 tilt mirrors
- Extendable with CCD camera and distance sensor

THz microprobe series **TeraSpike**

Order information

Terahertz microprobes detectors		
TeraSpike	THz photoconductive probe-tip with SMP plug	
	Series: TD-800-X- (Type: HR, HS or HRS)	
	Series: TD-800-Z- (Type: A-500G)	
TeraSpike Starter Kit	Includes: TeraSpike TD-800 microprobe, TS Phantom, TS Cable, mounting post and holde	
Terahertz microprobe emitters		
TeraSpike	InGaAs cantilever microprobe	
	Series: TD-1550-Y-BF	
Large-area bias-free Terahertz emitters		
TeraBlast	TD-1550-L-165	
	Option (-HPF): Back-surface high-pass filter	
Sub-system modules		
D-B1	Axial positioning, focusing, alignment unit	
D-B2	Vertical board base unit including D-B1	
Current amplifiers		
DLPCA-200	Variable gain current amplifier with 50 kHz Bandwidth @ 10 ⁷ V/A amplification	
DHPCA-100	Variable gain current amplifier with 220 kHz Bandwidth @ 10 ⁷ V/A amplification	
Accessory		
TeraSpike Phantom	Dummy probe-tip device	
TS Cable	SMP to SMA/BNC probe connection cable	

Service offer

- Not sure how to integrate TeraSpike into your system or do you have other questions? We are happy to advise you!
- Custom microprobe designs are possible on request.
- We offer measurement services including detailed data analysis reports for your samples in our laboratories.
- On-site installation support
- Training courses
- Component repair and maintenance services

Terahertz microprobing Solutions

RW

References

Applications

- Non-destructive testing
 - Terahertz technology
- Terahertz research & developement
 - Near-field analytics
 - Transparent conductors
 - Flexible electronics
 - Graphene
 - Wafer inspection
 - Thin-film analysis
 - Metamaterials
 - Solar cell inspection
 - Terahertz device analysis
 - Fault location
 - Time-domain reflectometry
 - Terahertz waveguide analysis
 - Marker-free biosensing
 - Optoelectronics
 - Plasmonics

www.protemics.com info@protemics.com Phone: +49 241 8867 140 Fax: +49 241 8867 560

Protemics GmbH Otto-Blumenthal-Str. 25 D-52074 Aachen Germany

BOSCH 🞆 👹 ECN

TERAHERTZ MICROPROBING SOLUTIONS